Abstract
The electromigration behavior of the composite solder composed of eutectic and high-lead SnPb was investigated with 5.7 × 104 A/cm2 current stressing. Voids and hillocks were found only within the eutectic solder, and the high-lead solder remained intact. Electromigration was accelerated dramatically at 150 °C, and Pb became the major migration species of eutectic SnPb for the microstructure change at the anode. The polarity of the opposite current direction was also studied. When electrons drift from the eutectic side to the high-lead side, voids occurred at the eutectic–Cu interface whereas hillocks accumulated at the eutectic–high-lead interface. When the current was reversed, voids occurred at the eutectic–high-lead interface whereas hillocks accumulated at the eutectic–Cu interface. The anchoring effect, which results from the attaching of the lead-rich grains in the eutectic solder to the high-lead solder, was considered to retard the electromigration damage only in this current direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.