Abstract
In the modern era of the Internet of Things, the potential role of flexible piezoelectric generators (PEG) reflects the rapid increase in self-powered devices and wearable technologies. In this study, a casting process to elaborate the polydimethylsiloxane (PDMS)/barium titanate (BaTiO 3) composite has been presented. The addition of 15 wt % BaTiO 3 microparticles into the PDMS polymer greatly enhances the piezoelectric coefficient (d 31 = 24 pC N-1), leading to an increased output voltage of approximately 4 V under finger tapping force. The proposed flexible microgenerator yielded an excellent piezoelectric figure of merit (FoM 31 = 13.1 × 10-12 m2 N-1), significantly enhancing successfully the energy-harvesting performance (power density of 35 nW/cm2). Furthermore, the fabricated lead-free PEG exhibited an excellent flexibility figure of merit (fFoM) due to the low young modulus values (Maximum E = 3.4 MPa). These results indicate efficient energy conversion and demonstrate a favorable balance between the flexibility and piezoelectric properties of the composite, highlighting its potential for a wide range of applications in self-powered wearable sensors able to collect different human motions in applications such as gesture tracking and finger motion detection.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have