Abstract
Seemingly, contradictory results have been reported so far for electrostriction in anodic oxides. Furthermore, no definitive agreement could be obtained with theory. In this paper, in situ techniques are combined to elucidate electrostriction in anodic niobium oxide. The dependence of strain, internal stress, and dielectric constant on the electric field is measured by, respectively, spectroscopic ellipsometry, curvature, and impedance measurements. The through-thickness strain is tensile and proportional to the square of the electric field. The in-plane internal stress is compressive and proportional to the square of the electric field at low field values. The internal stress is predicted relatively well by the Maxwell stress because of the weak dependence of the dielectric constant on the volume change of the oxide. The dielectric constant decreases with the electric field, the dependence being quadratic. While the evolution of the strain and stress with the electric field can be ascribed to the dependence of the dielectric constant on strain, the dependence of the dielectric constant on the electric field contains an explicit strain and electric field dependence. A mechanism for the latter is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.