Abstract

Lead-free piezoelectric ceramics (Bi0.5Na0.5)0.935Ba0.065Ti1−x(Fe0.5Sb0.5)xO3 (BNBT6.5–xFS, x=0.005, 0.010, 0.015, 0.020) were prepared by a conventional solid sintering technique. The effects of B-site doping of (Fe, Sb) on the phase structure, microstructure, dielectric, ferroelectric, and piezoelectric properties of BNBT6.5 ceramics were systematically investigated. Results showed that (Fe, Sb) can completely diffuse in the BNBT6.5 lattice in the all studied components. The addition of (Fe, Sb) destroyed the ferroelectric long-range order, and thus promoted the electric field induced strain response. The maximum electric field-induced strain (Smax=0.37%) with normalized strain (d33*=Smax/Emax=454pm/V) at an applied electric field of 80kV/cm was obtained at x=0.015. Temperature dependent measurements of both polarization and strain from room temperature to 120°C suggested that the origin of the large strain is due to a reversible field-induced ergodic relaxor to ferroelectric phase transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.