Abstract

We propose a scheme to study the electromagnetically induced grating (EIG) of surface polaritons (SPs) in a negative index metamaterial/rare-earth-ion-doped crystal interface waveguide system, based on coherent population oscillation (CPO) modulating by a standing wave control field. Absorption grating can be formed via the large absorption modulation induced by the linear susceptibility of the system; the diffraction of SPs can be realized but with a very small first-order diffraction efficiency and the phase modulation in this case, is negligible. However, when the giant Kerr nonlinearity is taken into account, the phase modulation can be significantly enhanced and accompanied by high transmission at the same time, thus, a phase grating, which effectively diffracts SPs into a high-order direction, can be induced. For both the absorption and phase grating, the dependencies of the first-order diffraction efficiency on the Rabi frequency of the standing wave control field, optical detuning, and interaction length are discussed. The results obtained here have certain theoretical significance for spectral enhancements and precision measurements at the micro–nanoscales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call