Abstract

Electromagnetic (EM) scattering characteristics of perfectly electrical conducting (PEC) targets in the terahertz (THz) frequency range are investigated through the use of ray-based high-frequency EM techniques. These techniques include the methods of shooting and bouncing rays (SBR), and the truncated-wedge incremental-length diffraction coefficients (TW-ILDCs). The EM fields associated with each ray are tracked and computed, based on the principle of physical optics (PO) and/or geometrical optics (GO). The total field scattered from the PEC target is then obtained by summing up the EM contributions of each ray and each illuminated edge. In contrast to previously reported applications, these methods are combined together to solve three-dimensional (3D) scattering problems in the THz region. Due to the use of analytical formulas of physical optics and the truncated-wedge incremental-length diffraction coefficients method, the consideration of the multi-reflection effect in shooting and bouncing rays, and partially accounting for the second-order edge-diffraction effects in the truncated-wedge incremental-length diffraction coefficients method, we obtain an extremely efficient algorithm for studying THz scattering. It has excellent agreement with an accurate integral solver, the multilevel fast multipole algorithm (MLFMA), which cannot be used in handling large-scale THz problems. Both mono- and bistatic radar cross sections (RCS) of several PEC objects in the THz band are given to show the correctness and reliability of the asymptotic methods. The EM scattering characteristics of such targets in the THz region are analyzed. Great differences of the target characteristics between the THz and GHz regimes are observed and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call