Abstract

High resolution imaging in the terahertz (THz) frequency range is investigated theoretically in this paper through the use of the high frequency methods in computational electromagnetics (CEM). Physical optics (PO), shooting and bouncing ray (SBR) and truncated-wedge incremental length diffraction coefficients (TW-ILDCs) methods are combined together to compute the scattered fields, which are then used to construct the inverse synthetic aperture radar (ISAR) images through two dimensional fast Fourier transform (2D-FFT). The corresponding ISAR images clearly show that high range and bearing resolution can be easily realized for THz carrier waves with broad bandwidth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call