Abstract
An analytic solution is obtained for the problem of plane electromagnetic-wave scattering by an arbitrary configuration of N dielectric spheres. The multipole expansion method is employed, and the boundary condition is imposed using the translational addition theorem for vector spherical wave functions. A system of simultaneous linear equations is given in matrix form for the scattering coefficients. An approximate solution, which has been developed and employed by the authors for the scattering by N conducting spheres, is extended to the dielectric spheres case. Plots for the normalized backscattering, bistatic, and forward-scattering cross sections are presented over wide ranges of permittivity, size, and electrical separations between the neighbouring spheres. The results show a reduction in the normalized backscattering and bistatic cross sections for certain choices of permittivity relative to conducting arrays of spheres of the same dimensions and separations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have