Abstract
Streamlined nosecone radomes for airborne applications have to cater to high-end electromagnetic (EM) performance requirements of fire control radar antenna system. In this regard, the EM performance analysis of an ogival radome based on novel graded dielectric inhomogeneous wall structure is presented. The radome wall considered here consists of seven dielectric layers cascaded in such a way that the middle layer has maximum dielectric parameters (dielectric constant and electric loss tangent) and on either side, dielectric parameters of the layers decrease in a graded (or stepwise) manner. Further, the outer surface of the radome wall is coated with an antistatic and antierosion radome paint. The EM performance parameters of the radome enclosing an X-band slotted waveguide planar array antenna (center frequency: 10 GHz; bandwidth: 1 GHz) are computed based on 3-D ray tracing in conjunction with aperture integration method. The study shows that the proposed graded dielectric inhomogeneous streamlined radome is an excellent choice for airborne applications as compared to airborne radomes based on conventional constant thickness radome designs and variable thickness radome (VTR) designs. Further, it circumvents the constraints on fabrication that occur in streamlined VTR designs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have