Abstract

The interaction between electromagnetic waves and matter has led to the development of applications to detect and characterise them. The conventional systems use the emission, transmission and reception of waves at a specific frequency range to detect medium parameters (constant dielectric, permittivity, conductivity or permeability) of an analysed area. The interaction between the electromagnetic wave and the analysed medium depends on the range of frequency used. This phenomenon is used in different disciplines and working environments, geoscience or medical disciplines are examples where the use of electromagnetic waves provides non-intrusive applications with clear benefits. Each frequency of signal transmitted and received is analysed to determine the interaction produced in absolute measurements. In this work a method based in differential measurement technique is proposed as a novel way of detecting and characterizing electromagnetic matter characteristics. The theoretical results show that it is possible to obtain benefits from the behaviour of the wave-medium interaction using differential measurement on reception of electromagnetic waves at different frequencies. Differential measures introduce advantages in detection processes and increase development possibilities of new non-intrusive applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.