Abstract

AbstractA theoretical model to study electromagnetic ion cyclotron (EMIC) waves in kappa‐Maxwellian plasma is developed. The plasma is assumed to have five components, i.e., electrons, cool and hot protons, and singly charged helium and oxygen ions. The kappa‐Maxwellian anisotropic particle distribution function is assumed for the hot protons. We use the Kyoto University Plasma Dispersion Analysis Package, a full dispersion solver developed at Kyoto University, to obtain the numerical results and delineate the oxygen, helium, and proton bands. Higher harmonics of the EMIC waves are also studied, and the effects of the kappa distribution on the growth of these waves are clearly demonstrated. Our results are applied to Cluster spacecraft observations of EMIC waves in the inner magnetosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.