Abstract

We investigated the tailored electromagnetic interference shielding effectiveness (EMI SE) of polyester-matrix composites consisting of glass fiber textiles coated with multiwalled carbon nanotubes (MWCNTs) and exfoliated graphite nanoplatelets (xGnPs). The effects of various combinations of material parameters, including MWCNT length, xGnP size, MWCNT:xGnP weight ratio, host-substrate surface configuration of carbon nanomaterials (CNMs), and their amount coated per unit area, on the EMI SE were studied. The shielding mechanisms, namely, absorption, reflection, and multiple reflections, are discussed based on the underlying governing physics. EMI SE measurements showed that coating glass fibers with hybrid MWCNTs/xGnPs at 8/2 ratio yields EMI SEs higher than those of composites containing the same content of a single-type of CNM, ranging from 56.8 dB at 30 MHz to 35.3 dB at 1.5 GHz. Morphological studies showed that, upon placement on glass fiber surfaces, 1D fiber-like MWCNTs serve as interconnects that bridge the randomly oriented 2D platelet-like xGnPs to form an efficient plane shield of electromagnetic waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.