Abstract
Numerical simulations of three-dimensional nonlinear electromagnetic fluid drift turbulence in a tokamak plasma with externally applied stochastic magnetic-field perturbations are presented. The contributions to the radial particle transport due to nonlinearities arising from E×B advection and magnetic flutter are investigated for perturbation fields of varying strengths in the cases of low and high collisionalities. The perturbation strength is varied to study the physics for Chirikov parameters above 1. In all the cases considered a significant increase of E×B transport is found. A static contribution in the density and velocity perturbations contributes significantly to the total radial E×B transport. For low collisionality, the external perturbation leads to enhanced density and velocity fluctuations over a broad range in the toroidal wave-number spectrum, resulting in an enhanced turbulent flux. For high collisionality, the density fluctuations stay roughly the same and the velocity fluctuations are increased in an intermediate range of the toroidal wave number spectrum, separated from the maximum of the density fluctuations, thus leaving the turbulent flux almost unchanged.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have