Abstract

Classical telegrapher’s equations for electromagnetic field in a conducting medium, which are the consequence of coupling Maxwell’s equations, charge conservation law and Ohm’s law, are generalized by modeling medium’s conducting properties using two types of fractional Ohm’s laws, that include terms accounting for instantaneous and hereditary contribution of electric field to current density, with the hereditary term expressed either through the fractional integral or derivative. Solving the initial value problem for the above mentioned system of equations, the electromagnetic field vectors are obtained in terms of convolution of Green’s function with the initial spatial distribution of electromagnetic field vector describing the evolution of electromagnetic field. It is shown that the propagating nature of the electromagnetic field is due to distributional nature of Green’s function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.