7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.cnsns.2024.108328
Copy DOIPublication Date: Sep 3, 2024 |
A heterodimensional cycle is formed by the intersection of stable and unstable manifolds of two saddle periodic orbits that have unstable manifolds of different dimensions: connecting orbits exist from one periodic orbit to the other, and vice versa. The difference in dimensions of the invariant manifolds can only be achieved in vector fields of dimension at least four. At least one of the connecting orbits of the heterodimensional cycle will necessarily be structurally unstable, meaning that is does not persist under small perturbations. Nevertheless, the theory states that the existence of a heterodimensional cycle is generally a robust phenomenon: any sufficiently close vector field (in the C1-topology) also has a heterodimensional cycle.We investigate a particular four-dimensional vector field that is known to have a heterodimensional cycle. We continue this cycle as a codimension-one invariant set in a two-parameter plane. Our investigations make extensive use of advanced numerical methods that prove to be an important tool for uncovering the dynamics and providing insight into the underlying geometric structure. We study changes in the family of connecting orbits as two parameters vary and Floquet multipliers of the periodic orbits in the heterodimensional cycle change. In particular the Floquet multipliers of one of the periodic orbits change from real positive to real negative prior to a period-doubling bifurcation. We then focus on the transitions that occur near this period-doubling bifurcation and find that it generates new families of heterodimensional cycles with different geometric properties. Our careful numerical study suggests that further two-parameter continuation of the ‘period-doubled heterodimensional cycles’ gives rise to an abundance of heterodimensional cycles of different types in the limit of a period-doubling cascade.Our results for this particular example vector field make a contribution to the emerging bifurcation theory of heterodimensional cycles. In particular, the bifurcation scenario we present can be viewed as a specific mechanism behind so-called stabilisation of a heterodimensional cycle via the embedding of one of its constituent periodic orbits into a more complex invariant set.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.