Abstract
The basins of the inland waterways of the Russian Federation are characterized by a variety of specific navigation features, the destructive effects of which significantly affect the parameters of the purpose of radio navigation systems. Therefore, the task arises to develop a model and estimate the electromagnetic deformation of the high-precision radio navigation field in the basins of the inland waterways of Russia caused by their navigational features. The study and identification of the general navigational features of the basins of the inland waterways of Russia and the assessment of the degree of influence of their destabilizing factors on the quality indicators of the high-precision radio navigation field. New navigation features have been identified in the basins of the inland waterways of Russia, the destructive factors of which deform the high-precision radio navigation field and reduce the quality of transmission of differential corrections. The results obtained confirm a decrease in the accuracy of positioning unmanned vessels in sections of the waterway with a complex terrain topology and electromagnetic environment. At the same time, the positioning accuracy in river basins may deteriorate in local areas from 1.6 times (from 6.8 m to 28.7 m) to 4.3 times (from 27.3 m to 117 m), depending on the electro-magnetic situation and the value of the geometry coefficient. A decrease in the quality of differential correction transmission will be manifested at the boundaries of service areas and range from 1 dB in sparsely populated areas and up to 30 dB in industrial zones. These factors will reduce the safety of navigation, so they must be taken into account when operating ships and designing functional additions to the global nav. The results obtained in the work can be used in the formation and optimization of the topology of control and correction stations of differential additions to the global navigation satellite system and to meet the requirements for the accuracy of positioning of mobile objects in difficult physical and geographical conditions of the terrain and electromagnetic environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.