Abstract

AbstractIn this work, the finite‐difference time‐domain (FDTD) method is employed to study electromagnetic problems with moving bodies in a moving system. The proposed approach consists in modeling objects with time‐varying positions and using the direct discretization of Maxwell's equations in space and time domains. Doppler effects are investigated for problems with moving observer, source, or reflector, in a moving frame. A distinction is also made between a high‐impedance or low‐impedance plane wave source in motion. The full‐wave electromagnetic simulations are compared with closed‐form equations that agree with wave theory. The proposed analysis shows that, for Doppler radars used every day, the motion of the Earth relative to the Cosmic Microwave Background has a negligible effect and only relative motions in the Earth frame are relevant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.