Abstract

Several lines of investigation show that the rostral ventromedial medulla is a critical relay for midbrain regions, including the nucleus cuneiformis (CnF), which control nociception at the spinal cord. There is some evidence that local stimulation or morphine administration into the CnF produces the effective analgesia through the nucleus raphe magnus (NRM). The present study tries to determine the effect of morphine-induced analgesia following microinjection into the CnF in the absence of NRM. Seven days after the cannulae implantation, morphine was microinjected bilaterally into the CnF at the doses of 0.25, 1, 2.5, 5, 7.5 and 10 microg/0.3 microl saline per side. The morphine-induced antinociceptive effect measured by tail-flick test at 30, 60, 90 and 120 min after microinjection. The results showed that bilateral microinjection of morphine into the CnF dose-dependently causes increase in tail-flick latency (TFL). The 50% effective dose of morphine was determined and microinjected into the CnF (2.5 microg/0.3 microl saline per side) in rats after NRM electrolytic lesion (1 mA, 30 s). Lesion of the NRM significantly decreased TFLs, 30 (P<0.01) and 60 (P<0.05) but not 90-120 min after morphine microinjection into the CnF, compared with sham-lesion group. We concluded that morphine induces the analgesic effects through the opioid receptors in the CnF. It is also appeared that morphine-induced antinociception decreases following the NRM lesion but it seems that there are some other descending pain modulatory pathways that activate in the absence of NRM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call