Abstract

Lithium cobalt phosphate (LiCoPO4) is an attractive cathode material due to its high discharge potential (4.8 V vs. Li/Li+) and specific capacity (167 mAh g-1), resulting in an impressive specific energy of ~802 Wh kg-1. The development of LCP has proven difficult owing to the instability of the electrode and the tendency of the electrolyte to perpetually decompose (oxidize), leading to a highly resistive passivation layer. In this report, a substituted lithium cobalt iron phosphate (s-LiCo1-xFexPO4 or s-LCFP) cathode material was tested with various solvents and additives to find an optimized electrolyte that limits electrode polarization and improves cycle life. The s-LCFP cathode performed best with a 1M LiPF6 solution of EC/EMC (3/7 wt%) with 2% of additive ARL1. Comparing ARL1 to the baseline electrolyte, the fade rate was reduced from 0.014% per cycle to 0.005% per cycle and the shift in charge voltage (due to polarization) was reduced from 39mV to 19mV through 50 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.