Abstract

Using nine 9,10-bisstyrylanthracene derivatives (BSA's) with different substituents as emission layer materials, multilayer electroluminescent (EL) devices were fabricated. Among nine BSA's, three BSA's were found to exhibit high EL performance. Four types of devices, a single-layer device with a BSA emission layer, two types of two-layer devices in which BSA emission layers were combined with a triphenylamine dimer as a hole transport layer or an oxadiazole derivative as an electron transport layer, and a three-layer device, were fabricated using the three BSA's. The relationships between the device structures and EL performances of these devices were studied. Ionization potential values in vacuum-deposited films of BSA's were measured. It was found that the introduction of an electron withdrawing group increased electron injection/transport capability, and that of electron donating groups increased hole injection/transport capability. The relative EL efficiencies of various devices were discussed in terms of the electronic nature of BSA's.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.