Abstract

The light emission properties of GeSn pn diodes were investigated as a function of alloy composition and doping levels. Very sharp interfaces between contiguous ultra-highly doped p- and n-layers were obtained using in situ doping with B2H6 and P(SiH3)3 in a chemical vapor deposition environment, yielding nearly ideal model systems for systematic studies. Changes in the doping levels and layer Sn concentrations are shown to greatly affect the electroluminescence spectra. This sensitivity should make it possible to optimize the emission efficiency for these structures in the interesting quasi-direct regime, for which direct gap luminescence is observed due to the proximity of the conduction band quasi-Fermi level to the minimum of the conduction band at the center of the Brillouin zone. Such structures represent the basic building block of Ge-based electrically pumped lasers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.