Abstract

We study a transmission line resonator which is driven by electrons tunneling through a voltage-biased tunnel junction. Using the Born-Markovian quantum master equation in the polaron basis we investigate the nonequilibrium photon state and emission spectrum of the resonator as well as properties of the transport current across the tunnel junction and its noise spectrum. The electroluminescence is optimized, with maximum peak height and narrow linewidth, when the back-action of the tunnel junction on the resonator and the damping of the resonator are similar in strength. For strong coupling between the resonator and tunnel junction, multiphoton effects create signatures in the transport current and current noise spectrum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.