Abstract
Aiming at developing low-cost, high-performance catalysts for the electrochemical reduction of CO2 (CO2-ERR) to valuable multicarbon (C2–C3) chemicals to alleviate global warming, trimetallic alloy electrocatalysts containing Cu, Ni, and Sn supported on a Pd-activated carbon fabric substrate (CS) were prepared via an electroless deposition method. The as-deposited CuNiSn/CS electrocatalysts were employed in CO2-ERR in an H-cell type reactor at an applied potential of −1.6 V vs. Ag/AgCl. The effect of the electroless deposition time (15, 30, and 45 min) was investigated, finding no significant structural differences according to the X-ray diffraction patterns. The evaluation of the reaction performance via linear sweep voltammetry revealed that CO2 was more effectively reduced to adsorbed species on the catalytic surface sites of the electrocatalyst prepared with a 30 min deposition time. The analysis of the gas and liquid products via gas chromatography and nuclear magnetic resonance, respectively, revealed that the Faradaic efficiency and H2 production over CuNiSn/CS was lower than those over related bimetallic and monometallic electrocatalysts, indicating the inhibition of the competitive H2 evolution reaction. Liquid products including formate, ethylene glycol, acetone, ethanol, acetate, and 1-buthanol were detected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.