Abstract
Catalysts based on electroless nickel and bi-metallic nickel-molybdenum nanoparticles were synthesized for the hydrolysis of sodium borohydride for hydrogen generation. The catalysts were synthesized by polymer-stabilized Pd nanoparticle-catalyzation and activation of Al2O3 substrate and electroless Ni or Ni-Mo plating of the substrate for selected time lengths. Catalytic activity of the synthesized catalysts was tested for the hydrolyzation of alkaline-stabilized NaBH4 solution for hydrogen generation. The effects of electroless plating time lengths, temperature and NaBH4 concentration on hydrogen generation rates were analyzed and discussed. Compositional analysis and surface morphology were carried out for nano-metallized Al2O3 using Scanning Electron Micrographs (SEM) and Energy Dispersive X-Ray Microanalysis (EDAX). The as-plated polymer-stabilized electroless nickel catalyst plated for 10 min and unstirred in the hydrolysis reaction exhibited appreciable catalytic activity for hydrolysis of NaBH4. For a zero-order reaction assumption, activation energy of hydrogen generation using the catalyst was estimated at 104.6 kJ/mol. Suggestions are provided for further work needed prior to using the catalyst for portable hydrogen generation from aqueous alkaline-stabilized NaBH4 solution for fuel cells.
Highlights
Proton Exchange Membrane Fuel Cells (PEMFC) can be used to generate clean electrical energy from a hydrogen source
We study the catalytic hydrolysis of alkaline NaBH4 solution with limited diffusion using electrolessly prepared Ni-based catalysts
This paper reports on the diffusion-limited electroless Ni-Mo-P catalysis of NaBH4 hydrolysis for hydrogen generation
Summary
Proton Exchange Membrane Fuel Cells (PEMFC) can be used to generate clean electrical energy from a hydrogen source. Issues of generation and storage of hydrogen fuel for PEMFCs are currently being tackled [1]. Sodium borohydride (NaBH4) and ammonia borane (NH3BH3) are the two main compounds currently being studied seriously for hydrogen generation, due to their high storage densities of 10.8 and 19.6 wt %, respectively [3,4,5,6,7,8,9,10]. Despite the loss of favor of the US Department of Energy for a potential source of chemical hydrogen for automobile use, NaBH4 can still be used to generate hydrogen for use in mobile and portable devices [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.