Abstract

The addition of silicon carbide (SiC) nanoparticles into electroless nickel (Ni)-based coatings improves both corrosion resistance and mechanical properties of the resulting Ni-P/SiC nanocomposite coatings, making them potential candidate as protective coatings in aggressive environments. Ni-P/SiC nanocomposite coatings were produced from precursor bath with small SiC loading levels (0.25 or 1.0 g/L) and characterized for morphology, corrosion resistance, and hardness. Microstructural examination using FE-SEM and AFM revealed that incorporation of uniformly dispersed SiC nanoparticles leads to smaller nodule size with fine-grain structure and low surface roughness. Electrochemical impedance spectroscopy studies in 4 wt.% NaCl solution showed that the nanocomposite coatings exhibit excellent corrosion resistance, as indicated by high charge-transfer resistance and low double-layer capacitance values of ~137 kΩ cm2 and 19 µF cm−2, respectively. The coatings maintained their structural integrity even after 5 days of saline bath immersion, as there was no cracking in the deposit microstructure besides formation of shallow pits and submicron-sized pores. A two-fold increase in the average hardness value was noticed from 4.5 (pure Ni-P) to 8.5 GPa (Ni-P/SiC coating) which can be ascribed to modified deposit morphology and uniformly dispersed SiC nanoparticles that act as obstacles to plastic deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.