Abstract

High aspect ratio silver nanowires (AgNWs) with an average length of 40 μm and average diameter of 88 nm were successfully synthesized using waste ethylene glycol as solvent and reducing agent. Silver nanowires with an average length and diameter of 32 μm and 122 nm, were produced after the third cycle of being reused. A transparent conducting film with a sheet resistance of 69 Ω/sq and optical transmittance of 91% was fabricated by Meyer rod coating an ink formulation of AgNWs dispersed in hydroxyethyl celullose (HEC)/methanol/deionized water. The low resistance of the AgNW networks was maintained even after 1000 bending cycles due to HEC acting as binder for the nanowires. The AgNWHEC transparent conductive electrode performed better than bare AgNWs and indium tin oxide (ITO) on polyethylene terephthalate (PET) substrate after several bending cycles. The AgNW-HEC electrode also showed excellent stability against corrosion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call