Abstract

To assess a novel, noninvasive intervention capable of mobilizing charged antibacterial nanoparticles to the apical portions of the root canal system, utilizing the principles of electrokinetics. Experiments were conducted in three stages. Stage-1: A computer model was generated to predict and visualize the electric field and current density distribution generated by the proposed intervention. Stage-2: Transport of chitosan nanoparticles (CSnp) was evaluated qualitatively using a transparent microfluidic model with fluorescent-labelled CSnp. Stage-3: An ex vivo model was utilized to study the antimicrobial efficacy of the proposed treatment against 3-week-old monospecies E.faecalis biofilms. Scanning electron microscopy (SEM) was also utilized in this stage to confirm the deposition of CSnp. The results of the computer simulations predicted an electric field and current density that reach their maxima at the apical constriction of the root canal. Correspondingly, the microfluidic experiments demonstrated rapid, controlled CSnp transport throughout the simulated root canal anatomy with subsequent distribution and deposition in the apical constriction as well as periapical regions. Infected root canals when subjected to the novel treatment method resulted in a mean bacterial reduction of 2.1 log CFU. SEM analysis revealed electrophoretic deposition of chitosan nanoparticles onto the root canal dentine walls in the apical region. The findings from this study demonstrate that the combination of cationic antibacterial nanoparticles with a low-intensity electric field results in particle transportation (electrophoresis) and deposition within the root canal. This results in a synergistic antibiofilm efficacy and has the potential to enhance root canal disinfection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.