Abstract

ABSTRACT In this study, Pb-contaminated soil in the e-waste dismantle site was remediated by activated carbon fiber (ACF) enhanced electrokinetic remediation. Experiments were conducted using Fe(NO3)3 as catholyte and citric acid-sodium citrate as anolyte with different conditions: pH value of anolyte, voltage and the electrode gap. At the same time, we set up a group of contrast test without ACF to investigate the adsorption performance of ACF for Pb. Results showed that the highest removal rate of Pb after the remediation was 80.53% at 4 cm from the anode when the electrode gap was 31 cm, pH value was 3 and the voltage was 28 V, and the total removal rate increased significantly with the decrease of the pH value of anolyte and the increase of voltage. Characterization of ACF after reaction showed that ACF effectively adsorbed heavy metal Pb, and the adsorption amount was 1.42 mg/g. Sequential extraction analysis revealed that Pb mainly existed in the forms of organic matter bound and residual in the soil after remediation. These forms are relatively stable and low toxicity, indicating that the remediation has significantly reduced the harm of Pb to the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.