Abstract

Membrane capacitance and membrane conductance values are reported for insulin secreting cells (primary -cells and INS-1 insulinoma cells), determined using the methods of dielectrophoresis and electrorotation. The membrane capacitance value of 12.57 (+/-1.46) mFm(-2), obtained for -cells, and the values from 9.96 (+/-1.89) mFm(-2) to 10.65 (+/-2.1) mFm(-2), obtained for INS-1 cells, fall within the range expected for mammalian cells. The electrorotation results for the INS-1 cells lead to a value of 36 (+/-22) Sm(-2) for the membrane conductance associated with ion channels, if values in the range 2-3 nS are assumed for the membrane surface conductance. This membrane conductance value falls within the range reported for INS cells obtained using the whole-cell patch-clamp technique. However, the total 'effective' membrane conductance value of 601 (+/-182) Sm(-2) obtained for the INS-1 cells by dielectrophoresis is significantly larger (by a factor of around three) than the values obtained by electrorotation. This could result from an increased membrane surface conductance, or increased passive conduction of ions through membrane pores, induced by the larger electric field stresses experienced by cells in the dielectrophoresis experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call