Abstract

Numerical investigations are presented for an ionic liquid meniscus undergoing evaporation of ions in a regime of high electric field. A detailed model is developed to simulate the behavior of a stationary meniscus attached to a liquid feed system. The latter serves as a proxy for commonly utilized electrospray emitters such as needles and capillary tubes. Two solution families are identified for prototype liquid analogous to the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4). The first belongs to a regime of low electric field in which the meniscus is blunt and does not emit charge. The second belongs to a regime of high electric field in which a conelike meniscus produces charge from a sharp tip. Electrohydrodynamic features of the meniscus in this regime are presented. These reveal that the meniscus is Stokesian and hydrostatic and governed by conduction. The applied electric field influences both the shape of the meniscus and the current that it produces while the impedance of the feed system-which must be above a threshold value in order to ensure that the current, and therefore the flow, remains below a maximum value-influences the meniscus current but not the macroscopic shape. In general, this shape deviates from Taylor's idealized cone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.