Abstract

Abstract In this study, carbon-black (CB) conductive electrodes were successfully printed using the high-resolution electrohydrodynamic (EHD) jet printing technique. The wrapping of CB bundles with a polymeric surfactant, Triton X-100 (TX-100), enabled the CB/TX-100 composites to well disperse in ethanol/deionized water for use in the preparation of conductive inks for EHD jet printing. By adjusting the voltage and operation distance, the applied electrostatic and gravity forces to the loaded CB/TX-100 inks overcame the fluid forces (viscosity and surface tension) to elongate the droplet and provide continuous jet lines, where the ink widths were smaller than the diameter of the nozzle. The EHD-printed CB/TX-100 in the stable cone-jet mode formed conductive lines and various pattern shapes. These conductive lines were utilized as source and drain electrodes of organic field-effect transistors (OFETs) with solution-processed organic semiconductors. The OFET with printed CB/TX-100 electrodes exhibited better electrical performances, including a higher saturation mobility and smaller hysteresis, than those of the reference OFET with Au electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.