Abstract

Electrogenic binding of ions from the cytoplasmic side of the Na+,K+-ATPase has been studied by measurements of changes of the membrane capacitance and conductance triggered by a jump of pH or of the sodium-ion concentration in the absence of ATP. The pH jumps were performed in experiments with membrane fragments containing purified Na+,K+-ATPase adsorbed to a bilayer lipid membrane (BLM). Protons were released in a sub-millisecond time range from a photosensitive compound (caged H+) triggered by a UV light flash. The sodium concentration jumps were carried out by a fast solution exchange in experiments with membrane fragments attached to a solid-supported membrane deposited on a gold electrode. The change of the membrane capacitance triggered by the pH jump depended on the sodium-ion concentration. Potassium ions had a similar effect on the capacitance change triggered by a pH jump. The effects of these ions are explained by the their competition with protons in the binding sites on cytoplasmic side of the Na+,K+-ATPase. The approximation of the experimental data by a theoretical model yields the dissociation constants, K, and the cooperativity coefficients, n, of the binding sites for sodium ions (K = 2.7 mM, n = 2) and potassium ions (K = 1.7 mM, n = 2). In the presence of magnesium ions the apparent dissociation constants of sodium increased. A possible reason of the inhibition of sodium-ion binding by magnesium ions can be an electrostatic or conformational effect of magnesium ions bound to a separate site of the Na+,K+-ATPase close to the entrance to the sodium-ion binding sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.