Abstract
We localize the sources of brain activity of children with epilepsy based on electroencephalograph (EEG) recordings acquired during a visual discrimination working memory task. For the numerical solution of the inverse problem, with the aid of age-specific MRI scans processed from a publicly available database, we use and compare three regularization numerical methods, namely the standardized low resolution brain electromagnetic tomography (sLORETA), the weighted minimum norm estimation (wMNE) and the dynamic statistical parametric mapping (dSPM). We show that all three methods provide the same spatio-temporal patterns of differences between the groups of epileptic and control children. In particular, our analysis reveals statistically significant differences between the two groups in regions of the parietal cortex indicating that these may serve as "biomarkers" for diagnostic purposes and ultimately localized treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal for numerical methods in biomedical engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.