Abstract

Ketamine is an N-methyl-d-aspartate (NMDA) receptor antagonist commonly administered as a general anesthetic. However, neural circuit mechanisms to explain ketamine anesthesia-induced unconsciousness in humans are yet to be clearly defined. Disruption of frontal-parietal network connectivity has been proposed as a mechanism to explain this brain state. However, this mechanism was recently demonstrated at subanesthetic doses of ketamine in awake-patients. Therefore, we investigated whether there is an electroencephalogram (EEG) signature specific for ketamine anesthesia-induced unconsciousness. We retrospectively studied the EEG in 12 patients who received ketamine for the induction of general anesthesia. We analyzed the EEG dynamics using power spectral and coherence methods. Following the administration of a bolus dose of ketamine to induce unconsciousness, we observed a "gamma burst" EEG pattern that consisted of alternating slow-delta (0.1-4Hz) and gamma (∼27-40Hz) oscillations. This pattern was also associated with increased theta oscillations (∼4-8Hz) and decreased alpha/beta oscillations (∼10-24Hz). Ketamine anesthesia-induced unconsciousness is associated with a gamma burst EEG pattern. The EEG signature of ketamine anesthesia-induced unconsciousness may offer new insights into NMDA circuit mechanisms for unconsciousness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.