Abstract

We have measured the differential conductance of a tunnel junction between a thin metallic wire and a thick ground plane, as a function of the applied voltage. We find that near zero voltage, the differential conductance exhibits a dip, which scales as 1/square root of [V] down to voltages V approximately 10k(B)T/e. The precise voltage and temperature dependence of the differential conductance is accounted for by the effect on the tunneling density of states of the macroscopic electrodynamics contribution to electron-electron interaction, and not by the short-ranged screened-Coulomb repulsion at microscopic scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call