Abstract

Wastewater and by-product treatments are substantial issues with consequences for our society, both in terms of environmental impacts and economic losses. With an overall global objective of sustainable development, it is essential to offer eco-efficient and circular solutions. Indeed, one of the major solutions to limit the use of new raw materials and the production of wastes is the transition toward a circular economy. Industries must find ways to close their production loops. Electrodialysis (ED) processes such as conventional ED, selective ED, ED with bipolar membranes, and ED with filtration membranes are processes that have demonstrated, in the past decades and recently, their potential and eco-efficiency. This review presents the most recent valorization opportunities among different industrial sectors (water, food, mining, chemistry, etc.) to manage waste or by-product resources through electrodialysis processes and to improve global industrial sustainability by moving toward circular processes. The limitations of existing studies are raised, especially concerning eco-efficiency. Indeed, electrodialysis processes can be optimized to decrease energy consumption and costs, and to increase efficiency; however, eco-efficiency scores should be determined to compare electrodialysis with conventional processes and support their advantages. The review shows the high potential of the different types of electrodialysis processes to treat wastewaters and liquid by-products in order to add value or to generate new raw materials. It also highlights the strong interest in using eco-efficient processes within a circular economy. The ideal scenario for sustainable development would be to make a transition toward an eco-circular economy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.