Abstract

Needle type (165 μm 2) and small Pt disc (3–11 μm 2) microelectrodes were used for the electrodeposition of composite poly(aniline), PANi, films by cyclic voltammetry and chronoamperometry for the oxidation of ascorbate. PANi electroactivity at neutral pH was retained through polymer alkylation or by using large poly-anions, such as poly(vinylsulfonate), PVS, and poly(styrenesulfonate), PSS. Hence the growth of the composite films was studied in the presence of different counter ions such as SO 4 2−, Cl −, NaPVS and NaPSS. The morphology of the resulting films was examined by scanning electron microscopy. Results showed that flat PANi films with thicknesses much lower than the microelectrode radius were obtained by potentiodynamic electrodeposition. On the other hand films with mushroom shapes, with significant spill over, were obtained under constant potential. The resulting polymer modified microelectrodes films were shown to be suitable for the oxidation of ascorbate at 0.1 V vs. SCE and pH 7 with a detection limit of 1 μM for PANi/PSS composites. The current was independent of film thickness, mass transport controlled at low ascorbate concentrations and not affected by the presence of common interferences such as uric acid, glutathione or vitamin E. Due to their excellent properties the PANi–PSS film coated microelectrodes were used for the amperometric detection of ascorbate in human plasma. The results are encouraging for the use of small polymer modified Pt needle type microelectrodes for the detection of ascorbate in biological systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.