Abstract

Functional manganese-(Mn)-containing layers are becoming increasingly important in the fields of sacrificial corrosion protection, biodegradable medical devices or electrochemical energy conversion systems. Electrodeposition can be a low cost and time-efficient production route, but the very electronegative nature of Mn makes this reduction process quite challenging.In this paper, electrolytic potentiostatic deposition of metallic Mn layers from environmentally friendly aqueous manganese sulfate electrolytes with pH3 is successfully demonstrated. A continuous electrolyte flow in the cathodic compartment of the electrochemical cell for controlling the pH value during deposition was found to be essential for achieving good layer qualities. Based on cyclic voltammetry analysis in combination with quartz crystal microbalance measurements a suitable deposition potential range was identified. The obtained electrodeposited layers were characterized by means of SEM, XRD, GD-OES and XPS. The shift of the deposition potential from −2.4 VMSE to −2.6 VMSE (deposition time 60min) yields a thickness increase of the metallic α-Mn deposits from <500nm to ~2μm. Only thin additional surface regions of Mn-oxides/-hydroxides were identified. The important role of (NH4)2SO4 as complex-forming electrolyte additive is discussed and an impact of the salt concentration on the deposit properties is revealed. This is a promising starting point for further Mn alloy deposition analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.