Abstract
We report the fabrication of nanometer scale ordered arrays of magnetic cylindrical nanoparticles with low aspect ratio (height/radius a=0.2–7) and ultrahigh uniformity. Anodization and electrochemical deposition are employed for template synthesis and metal particle growth, respectively. Particle uniformity is achieved by an electrodeposition scheme, utilizing pulse reverse voltage wave forms to control nucleation and growth of the particles. The resulting nanoparticles are polycrystalline and grains are randomly oriented. The magnetic properties of the array are dominated by particle shape and by interparticle magnetostatic interactions. A very clear transition of the anisotropy from perpendicular to in plane is observed at an aspect ratio a of about two. The arrays exhibit good thermal stability, demonstrating a great potential of these structures as future recording media in a patterned scheme. The pulse reverse electrodeposition technique shows great promise for the synthesis of nanostructures of various nature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.