Abstract

The process parameters were optimized for the electrodeposition of nickel in an electrolytic membrane reactor. Nickel(II) and boric acid concentrations, pH and temperature were varied to evaluate the changes in current efficiency and specific energy consumption of nickel electrodeposition. The catholyte was aqueous nickel(II) sulfate and boric acid, and the anolyte was sulfuric acid solution. An anionic membrane separated the anolyte from the catholyte while maintained a conductive path between the two compartments. The results indicated that the cathode current efficiency increased with the increase of nickel concentration, pH and boric acid concentration, and decreased with the increase of current density and stirring rate. A maximum current efficiency of 97.15% was obtained under the optimized conditions of electrolyte composition of 40 g/L Ni and 40 g/L boric acid at temperature of 42 °C and pH of 6 with a cathode current density of 300 A/m2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.