Abstract

Voltammetry at a glassy carbon electrode was used to study the electrochemical deposition of Cd–Te from the Lewis basic 1-ethyl-3-methylimidazolium chloride/tetrafluoroborate air-stable room temperature ionic liquid between 80 °C and 140 °C. Deposition of tellurium alone occurs through a four-electron reduction of Te(iv) to Te which could be further reduced to Te(-ii) at a more negative potential. The Cd–Te electrodeposits could be obtained by the underpotential deposition (UPD) of Cd on the deposited Te. The UPD of Cd on Te was, however, limited by a slow charge transfer rate. Samples of Cd–Te electrodeposits were prepared on tungsten and titanium substrates and characterized by energy dispersive spectroscope (EDS), scanning electron microscope (SEM), and X-ray powder diffraction (XRD). The results showed that an excess amount of Cd(ii) was required in order to prepare CdTe codeposits with a Cd/Te atomic ratio approached 1/1. The deposit composition was independent of the deposition potential within the Cd UPD range. Raising the deposition temperature increased the UPD rate of Cd and promoted the formation polycrystalline CdTe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.