Abstract

Thin-film thermoelectric coolers are emerging as a viable option for the on-chip temperature management of electronic and photonic integrated circuits. In this work, we demonstrate the record heat flux handling capability of electrodeposited Bi2Te3 films of 720(±60) W cm-2 at room temperature, achieved by careful control of the contact interfaces to reduce contact resistance. The characteristic parameters of a single leg thin-film devices were measured in situ, giving a Seebeck coefficient of S = -121(±6) μV K-1, thermal conductivity of κ = 0.85(±0.08) W m-1 K-1, electrical conductivity of σ = 5.2(±0.32) × 104 S m-1, and electrical contact resistivity of ∼10-11 Ω m2. These thermoelectric parameters lead to a material ZT = 0.26(±0.04), which, for our device structure, allowed a net cooling of ΔTmax = 4.4(±0.12) K. A response time of τ = 20 μs was measured experimentally. This work shows that with the correct treatment of contact interfaces, electrodeposited thin-film thermoelectrics can compete with more complicated and expensive technologies such as metal organic chemical vapor deposition (MOCVD) multilayers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.