Abstract

Deposition of molybdenum disulfide (MoS2) coatings using physical vapor deposition (PVD) and mechanical burnishing has been widely assessed for solid lubricants in space applications but still suffers from line-of-sight constraints on complex geometries. Here, we highlight one of the first demonstrations of electrodeposited MoxSyOz and MoxSyOz/Ni thin-film coatings from aqueous solutions of ammonium tetrathiomolybdate for solid lubricant applications and their remarkable ability to provide low coefficients of friction and high wear resistance. Characterization of the coating morphology shows amorphous microstructures with a high oxygen content and cracking upon drying. Even so, electrodeposited MoxSyOz can achieve low steady-state coefficients of friction (μ ∼ 0.05-0.06) and wear rates (2.6 × 10-7 mm3/(N m)) approaching those of physical vapor deposited coatings (2.3 × 10-7 mm3/(N m)). Additionally, we show that adding dopants such as nickel increased the wear rate (7.5 × 10-7 mm3/(N m)) and initial coefficient of friction (μi = 0.23) due to compositional modifications such as dramatic sub-stoichiometry (S/Mo ∼ 1) and expression of a NiOx surface layer, although doping did reduce the degree of cracking upon drying.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.