Abstract

Superparamagnetic nanobeads offer several advantages over microbeads for immunocapture of nanocarriers (extracellular vesicles, lipoproteins, and viruses) in a bioassay: high-yield capture, reduction in incubation time, and higher capture capacity. However, nanobeads are difficult to "pull-down" because their superparamagnetic feature requires high nanoscale magnetic field gradients. Here, an electrodeposited track-etched membrane is shown to produce a unique superparamagnetic nano-edge ring with multiple edges around nanopores. With a uniform external magnetic field, the induced monopole and dipole of this nano edge junction combine to produce a 10× higher nanobead trapping force. A dense nanobead suspension can be filtered through the magnetic nanoporous membrane (MNM) at high throughput with a 99% bead capture rate. The yield of specific nanocarriers in heterogeneous media by nanobeads/MNM exceeds 80%. Reproducibility, low loss, and concentration-independent capture rates are also demonstrated. This MNM material hence expands the application of nanobead immunocapture to physiological samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call