Abstract

The paper discusses the features of supercooled water thin film of width $d=3.97$~nm contained by the perfect graphene layers and crystallizing under external stationary electric field. It was found that the electric field applied perpendicular to graphene layers impedes structural ordering, while the electric field applied in lateral direction contributes to formation of the cubic ice ($Ic$) phase, which is thermodynamically less stable compared to the hexagonal ice ($Ih$) phase. It is shown that the growth of the $Ic$ crystalline phase occurs without formation of intermediate crystalline phases. It was found that the crystallization rate depends strongly on the magnitude of the applied electric field. In particular, the processes of full electrocrystallization of the system do not appear over simulation time scale ($\sim 40$~ns) if the electric field of the magnitude less than $0.07~\rm{V/\AA}$ is applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.