Abstract

The coalescence of an aqueous droplet at an oil–water interface under an electric field has been investigated, with a view to quantify conditions that give rise to secondary droplet formation. Two patterns of drop-interface coalescence may occur: complete coalescence and partial coalescence. The former is obviously the desirable pattern for industrial coalescers. However in practice, the process of coalescence could actually produce smaller droplets, which become more difficult to remove, and hence undesirable. This is caused by either necking, due to extensive elongation of the droplet, or reaction to a fast and energetic coalescence and is referred to as partial coalescence. The volume of the droplets formed in this way has been analyzed as a function of the initial droplet size, electric field strength and the distance between the droplet and the interface. The expansion speed of the neck connecting the droplet and interface at the beginning of the pumping process has also been quantified. These results are useful in optimizing the electro-coalescence process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.