Abstract

Numerous inorganic and organic electrochromic materials are discussed in the context of developing a film-based optical shutter for a window application. It is possible electronically to alter a window's transmission and reflection properties by use of electrochromic thin films. This allows regulation of conductive and radiative heat transfer rates, with variable optical attenuation. As a result, an aperture can be optically and thermally managed, reducing space heating and cooling loads. The properties of transition metal oxides, such as WO 3, MoO 3, Ir 2O 3 and V 2O 5 are detailed. Organic systems such as heptyl viologen and polytungsten anion are reviewed. Also, intercalated structures are discussed. Various designs of working devices are outlined with emphasis on solid-state configurations. From this quantification, materials and devices with appropriate deposition techniques for window applications are detailed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.