Abstract

Conductive polymers are considered to be promising material for energy storage applications. Herein, a microporous hybrid energy storage material made of triphenylamine and dithienothiophene, having smart function charge property controlled by color change, is reported. Its polymer film having orange color switched to blue when a voltage is applied to charge the polymer film by oxidation. The film was obtained by potantiodynamic method, and its polymerization mechanism was explained using density functional theory (DFT) calculations. The hybrid energy storage material showed a high specific capacity of 54 mA h g−1, a high capacitance of 242F g−1 at 0.5 A g−1 and a high energy density of 43 W h kg−1 at current density of 10 A g−1. Symmetric energy storage device worked at a high voltage (3 V) and lit a red lamp for several seconds. Its combined electrochromic, high optical contrast of 60% and energy storage properties make the microporous polymer an efficient candidate for smart electronic applications, where energy capacity is monitored by simple visual color change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.