Abstract

Selective chemical reactions at precise amino acid residues of peptides and proteins have become an exploding field of research in the last few decades. With the emerging utility of bioconjugated peptides and proteins as drug leads and therapeutic agents, the design of smart protocols to modulate and conjugate biomolecules has become necessary. During this modification, the most important concern of biochemists is to keep intact the structural integrity of the biomolecules. Hence, a soft and selective biocompatible reaction environment is necessary. Electrochemistry, a mild and elegant tunable reaction platform to synthesize complex molecules while avoiding harsh and toxic chemicals, can provide such a reaction condition. However, this strategy is yet to be fully exploited in the field of selective modification of polypeptides. With this possibility, the use of electrochemistry as a reaction toolbox in peptide and protein chemistry is flourishing day by day. Unfortunately, there is no suitable review article summarizing the residue-specific modification of biomolecules. The present review provides a comprehensive summary of the latest manifested electrochemical approaches for the modulation of five redox-active amino acid residues, namely cysteine, tyrosine, tryptophan, histidine and methionine, found in peptides and proteins. The article also highlights the incredible potential of electrochemistry for the regio- as well as chemoselective bioconjugation strategy of biomolecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.