Abstract

The cathodic electrochemiluminescence (ECL) behavior of meso-tetra(4-sulfonatophenyl)porphyrin (TSPP) with potassium peroxydisulfate (K2S2O8) as the coreactant in aqueous solution with strong and stable emission was exploited to determine Cu(2+) down to nanomolar concentration. Two possible reaction mechanisms have been proposed to understand the generation of ECL by the TSPP/K2S2O8 system. The effects of the concentration of TSPP and K2S2O8, pH of the medium, and scan rate on the ECL intensity were studied in detail. The ECL intensity was efficiently quenched by trace amounts of Cu(2+). This phenomenon was used to develop a new method, which can offer rapid, reliable, and selective detection of Cu(2+). Under the optimum conditions, plots of the ECL of the TSPP/K2S2O8 system versus the concentration of Cu(2+) are linear in the range of 5 to 160 nM with a detection limit of 1.56 nM (S/N = 3). The proposed ECL sensor was successfully applied for analysis of tap and river water samples. It is anticipated that TSPP could be a new class of promising luminescent agent for ECL sensors. Graphical Abstract A two-step cathodic elelctrochemiluminescence (ECL) behavior of TSPP/K2S2O8 system in the aqueous solution and Cu(2+) determination using the same.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call